资源类型

期刊论文 323

年份

2023 19

2022 19

2021 17

2020 19

2019 27

2018 17

2017 16

2016 9

2015 19

2014 17

2013 16

2012 13

2011 14

2010 21

2009 16

2008 12

2007 10

2006 7

2005 5

2004 7

展开 ︾

关键词

压力容器技术 2

参数估计 2

大跨桥梁 2

安全系数 2

工艺参数 2

机器学习 2

结构健康监测 2

计算机视觉 2

1)幂模型 1

2035年 1

2R-1C模型;嵌入式系统;参数估计;非迭代方法;二次型 1

3D打印 1

ARMA模型 1

ArcObjects 1

BP神经网络 1

B样条函数 1

CAD/CAE一体化 1

CO2泡沫 1

FRP 聚合物 1

展开 ︾

检索范围:

排序: 展示方式:

Structural parameter design method for a fast-steering mirror based on a closed-loop bandwidth

Guozhen CHEN, Pinkuan LIU, Han DING

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 55-65 doi: 10.1007/s11465-019-0545-y

摘要: When a fast-steering mirror (FSM) system is designed, satisfying the performance requirements before fabrication and assembly is vital. This study proposes a structural parameter design approach for an FSM system based on the quantitative analysis of the required closed-loop bandwidth. First, the open-loop transfer function of the FSM system is derived. In accordance with the transfer function, the notch filter and proportional-integral (PI) feedback controller are designed as a closed-loop controller. The gains of the PI controller are determined by maximizing the closed-loop bandwidth while ensuring the robustness of the system. Then, the two unknown variables of rotational radius and stiffness in the open-loop transfer function are optimized, considering the bandwidth as a constraint condition. Finally, the structural parameters of the stage are determined on the basis of the optimized results of rotational radius and stiffness. Simulations are conducted to verify the theoretical analysis. A prototype of the FSM system is fabricated, and corresponding experimental tests are conducted. Experimental results indicate that the bandwidth of the proposed FSM system is 117.6 Hz, which satisfies the minimum bandwidth requirement of 100 Hz.

关键词: fast-steering mirror     structural parameter     PI controller     bandwidth     notch filter    

Stress-strain relationship with soil structural parameter of collapse loess

SHAO Shengjun, YU Qinggao, LONG Jiyong

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 293-293 doi: 10.1007/s11709-008-0100-0

Influence factors on natural frequencies of composite materials

Bo WANG, Feng ZHAO, Zixu ZHAO, Kunpeng XU

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 571-584 doi: 10.1007/s11465-020-0592-4

摘要: Compared with traditional materials, composite materials have lower specific gravity, larger specific strength, larger specific modulus, and better designability structure and structural performance. However, the variability of structural properties hinders the control and prediction of the performance of composite materials. In this work, the Rayleigh–Ritz and orthogonal polynomial methods were used to derive the dynamic equations of composite materials and obtain the natural frequency expressions on the basis of the constitutive model of laminated composite materials. The correctness of the analytical model was verified by modal hammering and frequency sweep tests. On the basis of the established theoretical model, the influencing factors, including layers, thickness, and fiber angles, on the natural frequencies of laminated composites were analyzed. Furthermore, the coupling effects of layers, fiber angle, and lay-up sequence on the natural frequencies of composites were studied. Research results indicated that the proposed method could accurately and effectively analyze the influence of single and multiple factors on the natural frequencies of composite materials. Hence, this work provides a theoretical basis for preparing composite materials with different natural frequencies and meeting the requirements of different working conditions.

关键词: composite material     hammering and frequency sweep test     structural parameter     natural frequency    

苏通大桥主桥结构体系研究

张喜刚​​​​​​​,裴岷山​​​​​​​,袁洪​​​​​​​,徐利平​​​​​,朱斌​​​​​​​

《中国工程科学》 2009年 第11卷 第3期   页码 20-25

摘要:

苏通大桥主跨1 088m,是目前世界上最大跨径的斜拉桥。大桥桥位处建筑条件复杂,抗震和抗风要求高,选择合理的桥梁结构体系是保证结构安全和功能的关键。介绍了苏通大桥结构体系的比选过程,比较了全漂浮、黏滞阻尼器、液压缓冲器和塔梁固接4种体系,重点分析对比了不同参数下黏滞阻尼器和液压缓冲器的结构响应,首次提出了用于桥梁的带有附加限位功能的特大型液体黏滞阻尼器,对阻尼器的设计参数进行了分析研究,并在苏通大桥上实现了这一新型装置。

关键词: 苏通大桥斜拉桥     结构体系     阻尼器     阻尼参数     限位    

Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 490-505 doi: 10.1007/s11709-020-0669-5

摘要: This study investigates the performance of four machine learning (ML) algorithms to evaluate the earthquake-induced liquefaction potential of soil based on the cone penetration test field case history records using the Bayesian belief network (BBN) learning software Netica. The BBN structures that were developed by ML algorithms-K2, hill climbing (HC), tree augmented naive (TAN) Bayes, and Tabu search were adopted to perform parameter learning in Netica, thereby fixing the BBN models. The performance measure indexes, namely, overall accuracy ( ), precision, recall, , and area under the receiver operating characteristic curve, were used to evaluate the training and testing BBN models’ performance and highlight the capability of the K2 and TAN Bayes models over the Tabu search and HC models. The sensitivity analysis results showed that the cone tip resistance and vertical effective stress are the most sensitive factors, whereas the mean grain size is the least sensitive factor in the prediction of seismic soil liquefaction potential. The results of this study can provide theoretical support for researchers in selecting appropriate ML algorithms and improving the predictive performance of seismic soil liquefaction potential models.

关键词: seismic soil liquefaction     Bayesian belief network     cone penetration test     parameter learning     structural learning    

Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0703-5

摘要: In fiber laser beam welding (LBW), the selection of optimal processing parameters is challenging and plays a key role in improving the bead geometry and welding quality. This study proposes a multi-objective optimization framework by combining an ensemble of metamodels (EMs) with the multi-objective artificial bee colony algorithm (MOABC) to identify the optimal welding parameters. An inverse proportional weighting method that considers the leave-one-out prediction error is presented to construct EM, which incorporates the competitive strengths of three metamodels. EM constructs the correlation between processing parameters (laser power, welding speed, and distance defocus) and bead geometries (bead width, depth of penetration, neck width, and neck depth) with average errors of 10.95%, 7.04%, 7.63%, and 8.62%, respectively. On the basis of EM, MOABC is employed to approximate the Pareto front, and verification experiments show that the relative errors are less than 14.67%. Furthermore, the main effect and the interaction effect of processing parameters on bead geometries are studied. Results demonstrate that the proposed EM-MOABC is effective in guiding actual fiber LBW applications.

关键词: laser beam welding     parameter optimization     metamodel     multi-objective    

Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach

Pijush Samui, Jagan J

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 133-136 doi: 10.1007/s11709-013-0202-1

摘要: This article examines the capability of Gaussian process regression (GPR) for prediction of effective stress parameter ( ) of unsaturated soil. GPR method proceeds by parameterising a covariance function, and then infers the parameters given the data set. Input variables of GPR are net confining pressure ( ), saturated volumetric water content ( ), residual water content ( ), bubbling pressure ( ), suction ( ) and fitting parameter ( ). A comparative study has been carried out between the developed GPR and Artificial Neural Network (ANN) models. A sensitivity analysis has been done to determine the effect of each input parameter on . The developed GPR gives the variance of predicted . The results show that the developed GPR is reliable model for prediction of of unsaturated soil.

关键词: unsaturated soil     effective stress parameter     Gaussian process regression (GPR)     artificial neural network (ANN)     variance    

1000 MW ultra-supercritical turbine steam parameter optimization

FENG Weizhong

《能源前沿(英文)》 2008年 第2卷 第2期   页码 187-193 doi: 10.1007/s11708-008-0030-5

摘要: The 2 × 1000 MW ultra-supercritical steam turbine of Shanghai Waigaoqiao Phase III project, which uses grid frequency regulation and overload control through an overload valve, is manufactured by Shanghai Turbine Company using Siemens technology. Through optimization, the steam pressure is regarded as the criterion between constant pressure and sliding pressure operation. At high circulating water temperature, the turbine overload valve is kept closed when the unit load is lower than 1000 MW while at other circulating water temperatures the turbine can run in sliding pressure operation when the unit load is higher than 1000 MW and the pressure is lower than 27 MPa This increases the unit operation efficiency. The 3D bending technology in the critical piping helps to reduce the project investment and minimize the reheat system pressure drop which improves the unit operation efficiency and safety. By choosing lower circulating water design temperature and by setting the individual Boiler Feedwater Turbine condenser to reduce the exhaust steam flow and the heat load to the main condenser, the unit average back pressure and the terminal temperature difference are minimized. Therefore, the unit heat efficiency is increased.

Energy efficient cutting parameter optimization

Xingzheng CHEN, Congbo LI, Ying TANG, Li LI, Hongcheng LI

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 221-248 doi: 10.1007/s11465-020-0627-x

摘要: Mechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.

关键词: energy efficiency     cutting parameter     optimization     machining process    

Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

Xueping PAN, Ping JU, Feng WU, Yuqing JIN

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 367-376 doi: 10.1007/s11465-017-0429-y

摘要:

A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

关键词: wind turbine generator     DFIG     drive train system     hierarchical parameter estimation method     trajectory sensitivity technique    

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1082-1094 doi: 10.1007/s11709-019-0537-3

摘要: An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

关键词: modal parameter identification     variational mode decomposition     civil structure     nonlinear system     closely spaced modes    

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 237-251 doi: 10.1007/s11709-014-0242-1

摘要: Geotechnical uncertainties may play crucial role in response prediction of a structure with substantial soil-foundation-structure-interaction (SFSI) effects. Since the behavior of a soil-foundation system may significantly alter the response of the structure supported by it, and consequently several design decisions, it is extremely important to identify and characterize the relevant parameters. Moreover, the modeling approach and the parameters required for the modeling are also critically important for the response prediction. The present work intends to investigate the effect of soil and model parameter uncertainty on the response of shallow foundation-structure systems resting on dry dense sand. The SFSI is modeled using a beam-on-nonlinear-winkler-foundation (BNWF) concept, where soil beneath the foundation is assumed to be an assembly of discrete, nonlinear elements composed of springs, dashpots and gap elements. The sensitivity of both soil and model input parameters on shallow foundation responses are investigated using first-order second-moment (FOSM) analysis and Monte Carlo simulation through Latin hypercube sampling technique. It has been observed that the degree of accuracy in predicting the responses of the shallow foundation is highly sensitive soil parameters, such as friction angle, Poisson’s ratio and shear modulus, rather than model parameters, such as stiffness intensity ratio and spring spacing; indicating the importance of proper characterization of soil parameters for reliable soil-foundation response analysis.

关键词: shallow foun dation     sensitivity analysis     centrifuge data     first-order-second-moment (FOSM) method     parameter uncertainty    

Approximation of structural damping and input excitation force

Mohammad SALAVATI

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 244-254 doi: 10.1007/s11709-016-0371-9

摘要: Structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The more sensitive parameter to the damage is the damping behavior of the structure. The complexity of structural damping mechanisms has made this parameter to be one of the ongoing research topics. Despite all the difficulties in the modeling of damping, there are some approaches like as linear and nonlinear models which are described as the energy dissipation throughout viscous, material or structural hysteretic and frictional damping mechanisms. In the presence of a mathematical model of the damping mechanisms, it is possible to estimate the damping ratio from the theoretical comparison of the damped and un-damped systems. On the other hand, solving the inverse problem of the input force estimation and its distribution to each SDOFs, from the measured structural responses plays an important role in structural identification process. In this paper model-based damping approximation method and a model-less structural input estimation are considered. The effectiveness of proposed methods has been carried out through analytical and numerical simulation of the lumped mass system and the results are compared with reference data. Consequently, high convergence of the comparison results illustrates the satisfactory of proposed approximation methods.

关键词: structural modal parameters     damping identification method     input excitation force identification     Inverse problem    

Parameter studies on impact in a lap joint

Amir M. RAHMANI,Elizabeth K. ERVIN

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 64-77 doi: 10.1007/s11465-014-0322-x

摘要:

To represent a loose lap joint, a beam impacting four springs with gaps is modeled. Modal analysis with base excitation is solved, and time histories of contact points are closely monitored. Using the impulse during steady state response, six influential parameters are studied: damping ratio, contact stiffness, intermediate contact position, gap, excitation amplitude and beam height. For all parameters, the system response is highly controlled by modes with two contacting springs. Each parameter’s effect on system response is presented including unstable regions, unique trend behaviours result. Recommendations for structural designers are also noted.

关键词: impact mechanics     contact     joint behaviour     modal analysis     parameter study    

Effects of green roof damping and configuration on structural seismic response

《结构与土木工程前沿(英文)》   页码 1133-1144 doi: 10.1007/s11709-023-0959-9

摘要: Sustainable structures are critical for addressing global climate change. Hence, their structural resilience or ability to recover from natural events must be considered comprehensively. Green roofs are a widely used sustainable feature that improve the environment while providing excellent occupant amenity. To expand their usage, their inherent damping and layout sensitivity to seismic performance are investigated in this study. The soil of a green roof can serve as a damper to dissipate the energy generated by earthquakes or other dynamic events. Results of preliminary analysis show that a green roof soil can increase localized damping by 2.5% under both dry and saturated conditions. Based on these findings, nonlinear time-history analyses are conducted on a three-story building in SAP2000 to monitor the structural behavior with and without a green roof. The increased damping in the green roof soil is beneficial to the structural performance, i.e., it reduces the building displacement and acceleration by 10% and 12%, respectively. Additionally, certain configurations are more effective and beneficial to the structural response than others, which suggests the possibility of design optimization. Based on the findings of this study, new methods of modeling and considering green roofs in structural design are established.

关键词: green infrastructure     green roof     structural resilience     seismic design    

标题 作者 时间 类型 操作

Structural parameter design method for a fast-steering mirror based on a closed-loop bandwidth

Guozhen CHEN, Pinkuan LIU, Han DING

期刊论文

Stress-strain relationship with soil structural parameter of collapse loess

SHAO Shengjun, YU Qinggao, LONG Jiyong

期刊论文

Influence factors on natural frequencies of composite materials

Bo WANG, Feng ZHAO, Zixu ZHAO, Kunpeng XU

期刊论文

苏通大桥主桥结构体系研究

张喜刚​​​​​​​,裴岷山​​​​​​​,袁洪​​​​​​​,徐利平​​​​​,朱斌​​​​​​​

期刊论文

Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential

Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU

期刊论文

Processing parameter optimization of fiber laser beam welding using an ensemble of metamodels and MOABC

期刊论文

Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach

Pijush Samui, Jagan J

期刊论文

1000 MW ultra-supercritical turbine steam parameter optimization

FENG Weizhong

期刊论文

Energy efficient cutting parameter optimization

Xingzheng CHEN, Congbo LI, Ying TANG, Li LI, Hongcheng LI

期刊论文

Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

Xueping PAN, Ping JU, Feng WU, Yuqing JIN

期刊论文

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

期刊论文

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

期刊论文

Approximation of structural damping and input excitation force

Mohammad SALAVATI

期刊论文

Parameter studies on impact in a lap joint

Amir M. RAHMANI,Elizabeth K. ERVIN

期刊论文

Effects of green roof damping and configuration on structural seismic response

期刊论文